A Distributed Bi-Behaviors Crow Search Algorithm for Dynamic Multi-Objective Optimization and Many-Objective Optimization Problems

نویسندگان

چکیده

Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Evolutionary Algorithms hybrid approaches seem to be suitable effectively deal with such problems. However, standard Crow Search Algorithm has not been considered for either DMOPs or MaOPs date. This paper proposes a Distributed Bi-behaviors (DB-CSA) different mechanisms, one corresponding search behavior another exploitative dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on large Gaussian-like Beta-1 function, which ensures diversity enhancement, while narrow Gaussian Beta-2 function used improve solution tuning convergence behavior. Two variants proposed DB-CSA approach developed: first variant solve set 2, 3, 5, 7, 8, 10,15 objectives, second aims several types time-varying Pareto optimal sets front. algorithm (DB-CSA-II) DMOPs, including process detect react change. Inverted General Distance, Mean Distance Hypervolume Difference main measurement metrics compare state-of-the-art MOEAs. Taguchi method manage meta-parameters algorithm. All quantitative results analyzed using non-parametric Wilcoxon signed rank test 0.05 significance level, validated efficiency solving 44 beds (21 23 MaOPS).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model and Algorithm for Dynamic Multi-Objective Distributed Optimization

Many problems in multi-agent systems can be represented as a Distributed Constraint Optimization Problem (DCOP) where the goal is to find the best assignment to variables in order to minimize the cost. More complex problems including several criteria can be represented as a Multi-Objective Distributed Constraint Optimization Problem (MODCOP) where the goal is to optimize several criteria at the...

متن کامل

Bi-goal evolution for many-objective optimization problems

This paper presents a meta-objective optimization approach, called Bi-Goal Evolution (BiGE), to deal with multi-objective optimization problems with many objectives. In multi-objective optimization, it is generally observed that 1) the conflict between proximity and diversity requirements is aggravated with the increase of the number of objectives and 2) the Pareto dominance loses its effective...

متن کامل

A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...

متن کامل

A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12199627